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Abstract

Decentralized cloud storage represents a fundamental shift in the efficiency and eco-
nomics of large-scale storage. Eliminating central control allows users to store and share
data without reliance on a third-party storage provider. Decentralization mitigates the
risk of data failures and outages while simultaneously increasing the security and pri-
vacy of object storage. It also allows market forces to optimize for less expensive storage
at a greater rate than any single provider could afford. Although there are many ways to
build such a system, there are some specific responsibilities any given implementation
should address. Based on our experience with petabyte-scale storage systems, we in-
troduce a modular framework for considering these responsibilities and for building our
distributed storage network. Additionally, we describe an initial concrete implementa-
tion for the entire framework.
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Changelog

This section describes updates from the past editions of this white paper. Beyond a few
trivial wording tweaks, we changed the following aspects in version 3.1:

- Clarified encryption blocks in section 4.1.2.

- Replaced Kademlia for storage node discovery with a direct node-to-satellite indi-
cation of network participation (section 4.6).

- Simplified the Audits service and containment mode (section 4.13).

- Added the ability for storage node operators to select the Satellites they would like
to work with, eliminating the need for Satellite vetting and opt-out (section 4.18).

- Removed section 4.21 Quality Control and Branding about obsolete branding ideas.

- Updated appendix B about anticipated attacks to reflect the removal of Kademlia.

With these changes in mind, we expect that this paper once again matches our in-
production service at the time of publication.

For more a detailed changelog, please see https//github.com/storj/whitepaper/compare/
v3.0-merged..v3.1l.
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1. Introduction

The Internet is a massive decentralized and distributed network consisting of billions of
devices which are not controlled by a single group or entity. Much of the data currently
available through the Internet is quite centralized and is stored with a handful of tech-
nology companies that have the experience and capital to build massive data centers
capable of handling this vast amount of information. A few of the challenges faced by
data centers are: data breaches, periods of unavailability on a grand scale, storage costs,
and expanding and upgrading quickly enough to meet user demand for faster data and
larger formats.

Decentralized storage has emerged as an answer to the challenge of providing a per-
formant, secure, private, and economical cloud storage solution. Decentralized storage
is better positioned to achieve these outcomes as the architecture has a more natural
alignment to the decentralized architecture of the Internet as a whole, as opposed to
massive centralized data centers.

News coverage of data breaches over the past few years has shown us that the fre-
guency of such breaches has been increasing by as much as a factor of 10 between 2005
and 2017 [1]. Decentralized storage's process of protecting data makes data breaches
more difficult than current methods used by data centers while, at the same time, cost-
ing less than current storage methods.

This model can address the rapidly expanding amount of data for which current solu-
tions struggle. With an anticipated 44 zettabytes of data expected to exist by 2020 and
a market that will grow to $92 billion USD in the same time frame [2], we have identified
several key market segments that decentralized cloud storage has the potential to ad-
dress. As decentralized cloud storage capabilities evolve, it will be able to address a much
wider range of use cases from basic object storage to content delivery networks (CDN).

Decentralized cloud storage is rapidly advancing in maturity, but its evolution is sub-
ject to a specific set of design constraints which define the overall requirements and im-
plementation of the network. When designing a distributed storage system, there are
many parameters to be optimized such as speed, capacity, trustlessness, Byzantine fault
tolerance, cost, bandwidth, and latency.

We propose a framework that scales horizontally to exabytes of data storage across
the globe. Our system, the Storj Network, is a robust object store that encrypts, shards,
and distributes data to nodes around the world for storage. Data is stored and served in
a manner purposefully designed to prevent breaches. In order to accomplish this task,
we've designed our system to be modular, consisting of independent components with
task-specific jobs. We've integrated these components to implement a decentralized ob-
ject storage system that is not only secure, performant, and reliable but also significantly
more economical than either on-premise or traditional, centralized cloud storage.
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We have organized the rest of this paper into six additional chapters. Chapter 2 dis-
cusses the design space in which Storj operates and the specific constraints on which
our optimization efforts are based. Chapter 3 covers our framework. Chapter 4 describes
the concrete implementation of the framework, while chapter 5 explains what happens
during each operation in the network. Chapter 6 covers future work. Finally, chapter 7
covers selected calculations.



2. Storj design constraints

2.1

2.2

Before designing a system, it's important to first define its requirements. There are many
different ways to design a decentralized storage system. However, with the addition of
a few requirements, the potential design space shrinks significantly. Our design con-
straints are heavily influenced by our product and market fit goals. By carefully consid-
ering each requirement, we ensure the framework we choose is as universal as possible,
given the constraints.

Security and privacy

Any object storage platform must ensure both the privacy and security of data stored
regardless of whether it is centralized or decentralized. Decentralized storage platforms
must mitigate an additional layer of complexity and risk associated with the storage of
data on inherently untrusted nodes. Because decentralized storage platforms cannot
take many of the same shortcuts data center based approaches can (e.g. firewalls, DMZs,
etc.), decentralized storage must be designed from the ground up to support not only
end-to-end encryption but also enhanced security and privacy at all levels of the system.

Certain categories of data are also subject to specific regulatory compliance. For ex-
ample, the United States legislation for the Health Insurance Portability and Accountabil-
ity Act (HIPAA) has specific requirements for data center compatibility. European coun-
tries have to consider the General Data Protection Regulation (GDPR) regarding how in-
dividual information must be protected and secured. Many customers outside of the
United States may feel they have significant geopolitical reasons to consider storing data
in a way that limits the ability for US-based entities to impact their privacy [3]. There are
many other regulations in other sectors regarding user's data privacy.

Customers should be able to evaluate that our software is implemented correctly, is
resistant to attack vectors (known or unknown), is secure, and otherwise fulfills all of the
customers' requirements. The code for the Storj network is open source software and
provides the level of transparency and assurance needed to prove that the behaviors of
the system are as advertised.

Decentralization

Informally, a decentralized application is a service that has no single operator. Further-
more, no single entity should be solely responsible for the cost associated with running
the service or be able to cause a service interruption for other users.

One of the main motivations for preferring decentralization is to drive down infras-
tructure costs for maintenance, utilities, and bandwidth. We believe that there are sig-
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nificant underutilized resources at the edge of the network for many smaller operators.
In our experience building decentralized storage networks, we have found a long tail of
resources that are presently unused or underused that could provide affordable and ge-
ographically distributed cloud storage. Conceivably, some small operator might have ac-
cess to less-expensive electricity than standard data centers or another small operator
could have access to less-expensive cooling. Many of these small operator environments
are not substantial enough to run an entire datacenter-like storage system. For example,
perhaps a small business or home Network Attached Storage (NAS) operator has enough
excess electricity to run ten hard drives but not more. We have found that in aggregate,
enough small operator environments exist such that their combination over the internet
constitutes significant opportunity and advantage for less-expensive and faster storage.

Our decentralization goals for fundamental infrastructure, such as storage, are also
driven by our desire to provide a viable alternative to the few major centralized storage
entities who dominate the market at present. We believe that there exists inherent risk
in trusting a single entity, company, or organization with a significant percentage of the
world's data. In fact, we believe that there is an implicit cost associated with the risk
of trusting any third party with custodianship of personal data. Some possible costly
outcomes include changes to the company’s roadmap that could result in the product
becoming less useful, changes to the company’s position on data collection that could
cause it to sell customer metadata to advertisers, or even the company could go out
of business or otherwise fail to keep customer data safe. By creating an equivalent or
better decentralized system, many users concerned about single-entity risk will have a
viable alternative. With decentralized architecture, Storj could cease operating and the
data would continue to be available.

We have decided to adopt a decentralized architecture because, despite the trade-
offs, we believe decentralization better addresses the needs of cloud storage and resolves
many core limitations, risks, and cost factors that result from centralization. Within this
context, decentralization results in a globally distributed network that can serve a wide
range of storage use cases from archival to CDN. However, centralized storage systems
require different architectures, implementations, and infrastructure to address each of
those same use cases.

Marketplace and economics

Public cloud computing, and public cloud storage in particular, has proven to be an at-
tractive business model for the large centralized cloud providers. Cloud computing is
estimated to be a $186.4 billion dollar market in 2018, and is expected to reach $302.5
billion by 2021 [4].

The public cloud storage model has provided a compelling economic model to end
users. Not only does it enable end users to scale on demand but also allows them to
avoid the significant fixed costs of facilities, power, and data center personnel. Public
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cloud storage has generally proven to be an economical, durable, and performant option
for many end users when compared to on-premise solutions.

However, the public cloud storage model has, by its nature, led to a high degree of con-
centration. Fixed costs are born by the network operators, who invest billions of dollars
in building out a network of data centers and then enjoy significant economies of scale.
The combination of large upfront costs and economies of scale means that there is an ex-
tremely limited number of viable suppliers of public cloud storage (arguably, fewer than
five major operators worldwide). These few suppliers are also the primary beneficiaries of
the economic return.

We believe that decentralized storage can provide a viable alternative to centralized
cloud. However, to encourage partners or customers to bring data to the network, the
price charged for storage and bandwidth—combined with the other benefits of decen-
tralized storage—must be more compelling and economically beneficial than competing
storage solutions. In our design of Storj, we seek to create an economically advantageous
situation for four different groups:

End users - \WWe must provide the same economically compelling characteristics of pub-
lic cloud storage with no upfront costs and scale on demand. In addition, end users
must experience meaningfully better value for given levels of capacity, durability,
security, and performance.

Storage node operators - It must be economically attractive for storage node operators
to help build out the network. They must be paid fairly, transparently, and be able
to make a reasonable profit relative to any marginal costs they incur. It should be
economically advantageous to be a storage node operator not only by utilizing un-
derused capacity but also by creating new capacity, so that we can grow the network
beyond the capacity that currently exists. Since node availability and reliability has
a large impact on network availability, cost, and durability, it is required that stor-
age node operators have sufficient incentive to maintain reliable and continuous
connections to the network.

Demand providers - It must be economically attractive for developers and businesses
to drive customers and data onto the Storj network. We must design the system to
fairly and transparently deliver margin to partners. We believe that there is a unique
opportunity to provide open-source software (OSS) companies and projects, which
drive over two-thirds of the public cloud workloads today without receiving direct
revenue, a source of sustainable revenue.

Network operator - To sustain continued investment in code, functionality, network
maintenance, and demand generation, the network operator, currently Storj Labs,
Inc., must be able to retain a reasonable profit. The operator must maintain this
profit while not only charging end users less than the public cloud providers but
also margin sharing with storage node operators and demand providers.

Additionally, the network must be able to account for ensuring efficient, timely billing
and payment processes as well as regulatory compliance for tax and other reporting. To
be as globally versatile as possible with payments, our network must be robust to accom-
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modate several types of transactions (such as cryptocurrency, bank payments, and other
forms of barter).

Lastly, the Storj roadmap must be aligned with the economic drivers of the network.
New features and changes to the concrete implementations of framework components
must be driven by applicability to specific object storage use cases and the relationship
between features and performance to the price of storage and bandwidth relative to
those use cases.

Amazon S3 compatibility

At the time of this paper's publication, the most widely deployed public cloud is Amazon
Web Services [5]. Amazon Web Services not only is the largest cloud services ecosystem
but also has the benefit of first mover advantage. Amazon’s first cloud services product
was Amazon Simple Storage Service, or Amazon S3 for short. Public numbers are hard
to come by but Amazon S3 is likely the most widely deployed cloud storage protocol
in existence. Most cloud storage products provide some form of compatibility with the
Amazon S3 application program interface (API) architecture.

Our objective isto aggressively compete in the wider cloud storage industry and bring
decentralized cloud storage into the mainstream. Until a decentralized cloud storage
protocol becomes widely adopted, Amazon S3 compatibility creates a graceful transi-
tion path from centralized providers by alleviating many switching costs for our users. To
achieve this, the Storj implementation allows applications previously built against Ama-
zon S3 to work with Storj with minimal friction or changes. S3 compatibility adds aggres-
sive requirements for feature set, performance, and durability. At a bare minimum, this
requires the methods described in Figure 2.1 to be implemented.

// Bucket operations
CreateBucket (bucketName)
DeleteBucket (bucketName)
ListBuckets ()

// Object operations

GetObject (bucketName, objectPath, offset, length)

PutObject (bucketName, objectPath, data, metadata)
DeleteObject (bucketName, objectPath)
ListObjects(bucketName, prefix, startKey, limit, delimiter)

Figure 2.1: Minimum S3 API

The Storj service supports the majority of the S3 protocol via two different integration
patterns that emerged as specific customer requirements:

Single tenant gateway - a self-hosted, end-to-end encrypted S3 compatible gateway
where the customer's equipment is responsible for encryption, erasure coding and
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direct peer-to-peer transmission of data to storage nodes, including data expansion
from erasure coded redundancy and long tail mitigation.

Multi-tenant gateway - a hosted S3 compatible gateway where a trusted provider is re-
sponsible for encryption, erasure coding, and transmission of data to storage nodes.
This gateway requires a key from the customer as part of every request, since the
customer's encryption keys are not preserved in the hosted environment.

Durability, device failure, and churn

A storage platform is useless unless it also functions as a retrieval platform. For any stor-
age platform to be valuable, it must be careful not to lose the data it was given, even in
the presence of a variety of possible failures within the system. Our system must store
data with high durability and have negligible risk of data loss.

For all devices, component failure is a guarantee. All hard drives fail after enough
wear [6] and servers providing network access to these hard drives will also eventually
fail. Network links may die, power failures could cause havoc sporadically, and storage
media become unreliable over time. Data must be stored with enough redundancy to
recover from individual component failures. Perhaps more importantly, no data can be
left in a single location indefinitely. In such an environment, redundancy, data mainte-
nance, repair, and replacement of lost redundancy must be considered inevitable, and
the system must account for these issues.

Furthermore, decentralized systems are susceptible to high churn rates where par-
ticipants join the network and then leave for various reasons, well before their hardware
has actually failed. For instance, Rhea et al. found that in many real world peer-to-peer
systems, the median time a participant lasts in the network ranges from hours to mere
minutes [7]. Maymounkov et al. found that the probability of a node staying connected to
a decentralized network for an additional hour is an increasing function of uptime (Fig-
ure 2.2 [8]). In other words, nodes that have been online for a long time are less likely to
contribute to overall node churn.

Churn could be caused by any number of factors. Storage nodes may go offline due
to hardware or software failure, intermittent internet connectivity, power loss, complete
disk failure, or software shutdown or removal. The more network churn that exists, the
more redundancy is required to make up for the greater rate of node loss. The more re-
dundancythatis required, the more bandwidth is needed for correct operation of the sys-
tem. In fact, there is a tight relationship between network churn, additional redundancy,
and bandwidth availability [9]. To keep background bandwidth usage and redundancy
low, our network must have low network churn and a strong incentive to favor long-lived,
stable nodes.

See section 7.3.3 and Blake et al. [9] for a discussion of how repair bandwidth varies as
a function of node churn.
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Figure 2.2: Probability of remaining online an additional hour as a function of uptime.
The x axis represents minutes. The y axis shows the fraction of nodes that stayed online
at least x minutes that also stayed online at least x + 60 minutes. Source: Maymounkov

etal [8]

Latency

Decentralized storage systems can potentially capitalize on massive opportunities for
parallelism. Some of these opportunities include increased transfer rates, processing ca-
pabilities, and overall throughput even when individual network links are slow. However,
parallelism cannot, by itself, improve latency. If an individual network link is utilized as
part of an operation, its latency will be the lower bound for the overall operation. There-
fore, any distributed system intended for high performmance applications must continu-
ously and aggressively optimize for low latency not only on an individual process scale
but also for the system's entire architecture.

Bandwidth

Global bandwidth availability is increasing year after year. Unfortunately, access to high-
bandwidth internet connections is unevenly distributed across the world. While some
users can easily access syrmmetric, high-speed, unlimited bandwidth connections, others
have significant difficulty obtaining the same type of access.

In the United States and other countries, the method in which many residential in-
ternet service providers (ISPs) operate presents two specific challenges for designers of
a decentralized network protocol. The first challenge is the asymmetric internet connec-
tions offered by many ISPs. Customers subscribe to internet service based on an adver-
tised download speed, but the upload speed is potentially an order of magnitude or two
slower. The second challenge is that bandwidth is sometimes “capped” by the ISP at a
fixed amount of allowed traffic per month. For example, in many US markets, the ISP
Comcast imposes a one terabyte per month bandwidth cap with stiff fines for customers
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who go over this limit [10]. An internet connection with a cap of 1 TB/month cannot av-
erage more than 385 KB/s over the month without exceeding the monthly bandwidth
allowance, even if the ISP advertises speeds of 10 MB/s or higher. Such caps impose sig-
nificant limitations on the bandwidth available to the network at any given moment.

With device failure and churn guaranteed, any decentralized system will have a cor-
responding amount of repair traffic. As a result, it is important to account for the band-
width required not only for data storage and retrieval but also for data maintenance and
repair [9]. Designing a storage system that is careless with bandwidth usage would not
only give undue preference to storage node operators with access to unlimited high-
speed bandwidth but also centralize the system to some degree. In order to keep the
storage system as decentralized as possible and working in as many environments as
possible, bandwidth usage must be aggressively minimized.

Please see section 7.1.1 for a discussion on how bandwidth availability and repair traffic
limit usable space.

Object size

We can broadly classify large storage systems into two groups by average object size.
To differentiate between the two groups, we classify a “large” file as a few megabytes
or greater in size. A database is the preferred solution for storing many small pieces of
information, whereas an object store or file system is ideal for storing many large files.

The initial product offering by Storj Labs is designed to function primarily as a decen-
tralized object store for larger files. While future improvements may enable database-like
use cases, object storage is the predominant initial use case described in this paper. We
made protocol design decisions with the assumption that the vast majority of stored ob-
jects will be 4MB or larger. While smaller files are supported, they may simply be more
costly to store.

It is worth noting that this will not negatively impact use cases that require reading
lots of files smaller than a megabyte. Users can address this with a packing strategy by
aggregating and storing many small files as one large file. The protocol supports seek-
ing and streaming, which will allow users to download small files without requiring full
retrieval of the aggregated object.

Byzantine fault tolerance

Unlike centralized solutions like Amazon S3, Storj operates in an untrusted environment
where individual storage providers are not necessarily assumed to be trustworthy. Storj
operatesover the publicinternet, allowing anyone to sign up to become a storage provider.
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We adopt the Byzantine, Altruistic, Rational (BAR) model [11] to discuss participantsin
the network.

- Byzantine nodes may deviate arbitrarily from the suggested protocol for any reason.
Some examples include nodes that are broken or nodes that are actively trying to
sabotage the protocol. In general, a Byzantine node is a bad actor, or one that op-
timizes for a utility function that is independent of the one given for the suggested
protocol.

- Inevitable hardware failures aside, Altruistic nodes are good actors and participate
in a proposed protocol even if the rational choice is to deviate.

- Rational nodes are neutral actors and participate or deviate only when it is in their
net best interest.

Some distributed storage systems (e.g. datacenter-based cloud object storage sys-
tems) operate in an environment where all nodes are considered altruistic. For example,
absent hardware failure or security breaches, Amazon's storage nodes will not do any-
thing besides what they were explicitly programmed to do, because Amazon owns and
runs all of them.

In contrast, Storj operates in an environment where every node is managed by its own
independent operator. In this environment, we can expect that a majority of storage
nodes are rational and a minority are Byzantine. Storj assumes no altruistic nodes.

We must include incentives that encourage the network to ensure that the rational
nodes on the network (the majority of operators) behave as similarly as possible to the
expected behavior of altruistic nodes. Likewise, the effects of Byzantine behavior must
be minimized or eliminated.

Note that creating a system that is robust in the face of Byzantine behavior does not
require a Byzantine fault tolerant consensus protocol—we avoid Byzantine consensus.
See sections 4.9, 6.2, and appendix A for more details.

Coordination avoidance

Agrowing body of distributed database research shows that systems that avoid coordina-
tion wherever possible have far better throughput than systems where subcomponents
are forced to coordinate to achieve correctness [12-19]. We use Balilis et al’s informal def-
inition that coordination is the requirement that concurrently executing operations syn-
chronously communicate or otherwise stall in order to complete [16]. This observation
happens at all scales and applies not only to distributed networks but also to concurrent
threads of execution coordinating within the same computer. As soon as coordination
is needed, actors in the system will need to wait for other actors, and waiting—due to
coordination issues—can have a significant cost.

While many types of operations in a network may require coordination (e.g., opera-
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tions that require linearizability' [15, 20, 21]), choosing strategies that avoid coordination
(such as Highly Available Transactions [15]) can offer performance gains of two to three
orders of magnitude over wide area networks. In fact, by carefully avoiding coordination
as much as possible, the Anna database [17] is able to be 10 times faster than both Cas-
sandra and Redis in their corresponding environments and 700 to 800 times faster than
performance-focused in-memory databases such as Masstree or Intel's TBB [22]. Not all
coordination can be avoided, but new frameworks (such as Invariant Confluence [16] or
the CALM principle [18,19]) allow system architects to understand when coordinationis re-
quired for consistency and correctness. As evidenced by Anna's performance successes,
it is most efficient to avoid coordination where possible.

Systems that minimize coordination are much better at scaling from small to large
workloads. Adding more resources to a coordination-avoidant system will directly in-
crease throughput and performance. However, adding more resources to a coordination-
dependent system (such as Bitcoin [23] or even Raft [24]) will not result in much additional
throughput or overall performance.

To get to exabyte scale, minimizing coordination is one of the key components of our
strategy. Surprisingly, many decentralized storage platforms are working towards archi-
tectures that require significant amounts of coordination, where most if not all opera-
tions must be accounted for by a single global ledger. For us to achieve exabyte scale,
it is a fundamental requirement to limit hotpath coordination domains to small spheres
which are entirely controllable by each user. This limits the applicability of blockchain-like
solutions for our use case.

TLinearizable operations are atomic operations on a specific object where the order of operations is equiva-
lent to the order given original “wall clock” time.
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After having considered our design constraints, this chapter outlines the design of a
framework consisting of only the most fundamental components. The framework de-
scribes all of the components that must exist to satisfy our constraints. As long as our
design constraints remain constant, this framework will, as much as is feasible, describe
Storj both now and ten years from now. While there will be some design freedom within
the framework, this framework will obviate the need for future rearchitectures entirely,
as independent components will be able to be replaced without affecting other compo-
nents.

Framework overview

All designs within our framework will do the following things:

Store data \When data is stored with the network, a client encrypts and breaks it up into
multiple pieces. The pieces are distributed to peers across the network. When this
occurs, metadata is generated that contains information on where to find the data
again.

Retrieve data \When data is retrieved from the network, the client will first reference the
metadata to identify the locations of the previously stored pieces. Then the pieces
will be retrieved and the original data will be reassembled on the client's local ma-
chine.

Maintain data When the amount of redundancy drops below a certain threshold, the
necessary data for the missing pieces is regenerated and replaced.

Pay for usage A unit of value should be sent in exchange for services rendered.

To improve understandability, we break up the design into a collection of eight inde-
pendent components and then combine them to form the desired framework.

The individual components are:

. Storage nodes

. Peer-to-peer communication
Redundancy

. Metadata

. Encryption

. Audits and reputation

. Data repair

. Payments

0 IO UAWN
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Storage nodes

The storage node's role is to store and return data. Aside from reliably storing data, nodes
should provide network bandwidth and appropriate responsiveness. Storage nodes are
selected to store data based on various criteria: ping time, latency, throughput, band-
width caps, sufficient disk space, geographic location, uptime, history of responding ac-
curately to audits, and so forth. In return for their service, nodes are paid for both data
egress and data at rest.

Because storage nodes are selected via changing variables external to the protocol,
node selection isan explicit, non-deterministic process in our framework. This means that
we must keep track of which nodes were selected for each upload via a small amount of
metadata; we can't select nodes for storing data implicitly or deterministically as in a sys-
tem like Dynamo [25]. As with GFS [26], HDFS [27], or Lustre [28], this decision implies the
requirement of a metadata storage system to keep track of selected nodes (see section
3.5).

Peer-to-peer communication

All peers on the network communicate via a standarized protocol. The framework re-
quires that this protocol:

- provides peer reachability, even in the face of firewalls and NATs where possible. This
may require techniques like STUN [29], UPNnP [30], NAT-PMP [31], etc.

- provides authentication as in S/Kademlia [32], where each participant cryptograph-
ically proves the identity of the peer with whom they are speaking to avoid man-in-
the-middle attacks.

- provides complete privacy. In cases such as bandwidth measurement (see section
4.17), the client and storage node must be able to communicate without any risk of
eavesdroppers. The protocol should ensure that all cormmunications are private by
default.

Additionally, the framework requires a way to look up peer network addresses by a
unigue identifier so that, given a peer’s unique identifier, any other peer can connect to
it. This responsibility is similar to the internet’'s standard domain name system (DNS) [33],
which isa mapping of an identifier to an ephemeral connection address, but unlike DNS,
there can be no centralized registration process. A network overlay can be built on top
of our chosen peer-to-peer commmunication protocol to achieve these goals. See Section
4.6 for implementation details.
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Redundancy

We assume that at any moment, any storage node could go offline permanently. Our
redundancy strategy must store data in a way that provides access to the data with high
probability, even though any given number of individual nodes may be in an offline state.
To achieve a specific level of durability (defined as the probability that data remains avail-
able in the face of failures), many products in this space use simple replication. Unfortu-
nately, this ties durability to the network expansion factor, which is the storage overhead
for reliably storing data. This significantly increases the total cost relative to the stored
data.

For example, suppose a certain desired level of durability requires a replication strat-
egy that makes eight copies of the data. This yields an expansion factor of 8x, or 800%.
This data then needs to be stored on the network, using bandwidth in the process. Thus,
more replication results in mMore bandwidth usage for a fixed amount of data. As dis-
cussed in the protocol design constraints (section 2.7) and Blake et al. [9], high bandwidth
usage prevents scaling, so this is an undesirable strategy for ensuring a high degree of
file durability.

As an alternative to simple replication, erasure codes provide a much more efficient
method to achieve redundancy. Erasure codes are well-established in use for both dis-
tributed and peer-to-peer storage systems [34—40]. Erasure codes are an encoding scheme
for manipulating data durability without tying it to bandwidth usage, and have been
found to improve repair traffic significantly over replication [9]. Importantly, they allow
changes in durability without changes in expansion factor.

An erasure code is often described by two numbers, k and n. If a block of data is en-
coded with a (k, n) erasure code, there are n total generated erasure shares, where only
any k of them are required to recover the original block of data. If a block of data is s bytes,
each of the n erasure shares is roughly s/k bytes. Besides the case when k =1 (replication),
all erasure shares are unique.

Interestingly, the durability of a (k = 20,n = 40) erasure code is better than a (k =
10,n = 20) erasure code, even though the expansion factor (2x) is the same for both. This
is because the risk is spread across more nodes in the (k = 20, n = 40) case. These consid-
erations make erasure codes an important part of our general framework.

To better understand how erasure codes increase durability without increasing expan-
sion factors, the following table shows various choices of k and n, along with the expan-
sion factor and associated durability:
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k n  Exp.factor P(D|p =10%)

2 4 2 99.207366813274616%
4 8 2 99.858868985411326%
8 1o 2 99.995462406878260%
6 32 2 99.999994620652776%
20 40 2 99.999999807694154%
32 64 2 99.999999999990544%

In contrast, replication requires significantly higher expansion factors for the same
durability. The following table shows durability with a replication scheme:

k n Exp.factor P(D|p =10%)

T 7 1 90.483741803595962%
1 2 2 98.247690369357827%
1 3 3 99.640050681691051%
1 10 10 99.999988857452166%
1 76 16 99.999999998036174%

To see how these tables were calculated, we'll start with the simplifying assumption
that p isthe monthly node churn rate (that is, the fraction of nodes that will go offline in a
month on average). Mathematically, time-dependent processes are modeled according
to the Poisson distribution, where it is assumed that A events are observed in the given
unitoftime. As a result, we model durability as the cumulative distribution function (CDF)
of the Poisson distribution with mean A = pn, where we expect A pieces of the file to be lost
monthly. To estimate durability, we consider the CDF up to n—k, looking at the probability
that at most n—k pieces of the file are lost in a month and the file can still be rebuilt. The
CDF is given by:

n-k A
—a A
PID)=e?y =
=0

The expansion factor still plays a big role in durability, as seen in the following table:

K n  Exp. factor P(D|p =10%)

4 6 15 97.688471224736705%

4 12 3 99.999514117129605%
20 30 15 99.970766304935266%
20 50 25 99.999999999999548%
100 150 15 99.999999999973570%

By being able to tweak the durability independently of the expansion factor, erasure
coding allows very high durability to be achieved with surprisingly low expansion factors.
Because of how limited bandwidth is as a resource, completely eliminating replication
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as a strategy and using erasure codes only for redundancy causes a drastic decrease in
bandwidth footprint.

Erasure coding also results in storage nodes getting paid more. High expansion fac-
tors dilute the incoming funds per byte across more storage nodes; therefore, low ex-
pansion factors, such as those provided by erasure coding, allow for a much more direct
passthrough of income to storage node operators.

Erasure codes' effect on streaming

Erasure codes are used in many streaming contexts such as audio CDs and satellite com-
munications [36], so it's important to point out that using erasure coding in general does
not make our streaming design requirement (required by Amazon S3 compatibility, see
section 2.4) more challenging. Whatever erasure code is chosen for our framework, as
with CDs, streaming can be added on top by encoding small portions at a time, instead
of attempting to encode a file all at once. See section 4.8 for more details.

Erasure codes’ effect on long tails

Erasure codes enable an enormous performance benefit, which is the ability to avoid
waiting for “long-tail” response times [41]. A long-tail response occurs in situations where
a needed server has an unreasonably slow operation time due to a confluence of un-
predictable factors. Long-tail responses are so-named due to their rare average rate of
occurrence but highly variable nature, which in a probability density graph looks like a
“long tail." In aggregate, long-tail responses are a big issue in distributed system design.

In MapReduce, long-tail responses are called “stragglers.” MapReduce executes re-
dundant requests called “backup tasks” to make sure that if specific stragglers take too
long, the overall operation can still proceed without waiting. If the backup task mecha-
nism is disabled in MapReduce, basic operations can take 44% longer to complete, even
though the backup task mechanism is causing duplicated work [42].

By using erasure codes, we are in a position to create MapReduce-like backup tasks for
storage [37,38]. For uploads, a file can be encoded to a higher (k, n) ratio than necessary
for desired durability guarantees. During an upload, after enough pieces have uploaded
to gain required redundancy, the remaining additional uploads can be canceled. This
cancellation allows the upload to continue as fast as the fastest nodes in a set, instead of
waiting for the slowest nodes.

Downloads are similarly improved. Since more redundancy exists than is needed,
downloads can be served from the fastest peers, eliminating a wait for temporarily slow
or offline peers.

The outcome is that every request is satisfiable by the fastest nodes participating in
any given transaction, without needing to wait for a slower subset. Focusing on opera-



3.5

Chapter 3. Framework 24

UPLOAD DOWNLOAD

=
S ‘ / llllllllll @ Sl \

/. -

» A
1 4 |4

\\\‘\%@

DATA DATA

I'I”“"] @ Slow Storage Node
\\\\\\& @ Lost Data

Figure 3.1: Various outcomes during upload and download

tions where the result is only dependent on the fastest nodes of a random subpopulation
turns what could be a potential liability (highly variable performance from individual ac-
tors) into a great source of strength for a distributed storage network, while still providing
great load balancing characteristics.

This ability to over-encode a file greatly assists dynamic load balancing of popular con-
tent on the network. See section 6.1 for a discussion on how we plan to address load
balancing very active files.

Metadata

Once we split an object up with erasure codes and select storage nodes on which to
store the new pieces, we now need to keep track of which storage nodes we selected. We
allow users to choose storage based on geographic location, performance characteristics,
available space, and other features. Therefore, instead of implicit node selection such
as a scheme using consistent hashing like Dynamo [25], we must use an explicit node
selection scheme such as directory-based lookups [43]. Additionally, to maintain Amazon
S3 compatibility, the user must be able to choose an arbitrary key, often treated like a path,
to identify this mapping of data pieces to node. These features imply the necessity of a
metadata storage system.

Amazon S3 compatibility once again imposes some tight requirements. We should
support: hierarchical objects (paths with prefixes), per-object key/value storage, arbitrarily
large files, arbitrarily large amounts of files, and so forth. Objects should be able to be
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stored and retrieved by arbitrary key; in addition, deterministic iteration over those keys
will be required to allow for paginated listing.

Every time an object is added, edited, or removed, one or more entries in this meta-
data storage system will need to be adjusted. As a result, there could be heavy churn in
this metadata system, and across the entire userbase the metadata itself could end up
being sizable.

For example, suppose in a few years the network stores one total exabyte of data,
where the average object size is 50MB and our erasure code is selected such that n = 40.
One exabyte of 50MB objects is 20 billion objects. This metadata system will need to
keep track of which 40 nodes were selected for each object. If each metadata element is
roughly 40 - 64 + 192 bytes (info for each selected node plus the path and some general
overhead), there are over 55 terabytes of metadata of which to keep track.

Fortunately, the metadata can be heavily partitioned by the user. A user storing 100
terabytes of 50 megabyte objects will only incur a metadata overhead of 5.5 gigabytes.
It's worth pointing out that these numbers vary heavily with object size: the larger the
average object size, the less the metadata overhead.

An additional framework focus is enabling this component—metadata storage—to be
interchangeable. Specifically, we expect the platform to incorporate multiple implemen-
tations of metadata storage that users will be allowed to choose between. This greatly
assists with our design goal of coordination avoidance between users (see section 2.10).

As metadata retrieval is a prerequisite to data retrieval in any operation, availability of
services responsible for metadata storage and retrieval are designed and implemented
to be distributed over multiple regions within a geography to provide maximum resis-
tance to any single point of failure, whether is it a device, server, network connection, or
entire region within a geography.

Aside from scale requirements, to implement Amazon S3 compatibility, the desired
API is straightforward and simple: Put (store metadata at a given path), Cet (retrieve
metadata at a given a path), List (paginated, deterministic listing of existing paths), and
Delete (remove a path). See Figure 2.1 for more details.

Encryption

Regardless of storage system, our design constraints require total security and privacy.
All data or metadata will be encrypted. Data must be encrypted as early as possible
in the data storage pipeline, ideally before the data ever leaves the source computer.
This means that an Amazon S3-compatible interface or appropriate similar client library
should run colocated on the same computer as the user's application.

Encryption should use a pluggable mechanism that allows users to choose their de-
sired encryption scheme. It should also store metadata about that encryption scheme to
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allow users to recover their data using the appropriate decryption mechanism in cases
where their encryption choices are changed or upgraded.

To support rich access management features, the same encryption key should not be
used for every file, as having access to one file would result in access to decryption keys for
all files. Instead, each file should be encrypted with a unique key. This should allow users
to share access to certain selected files without giving up encryption details for others.

Because each file should be encrypted differently with different keys and potentially
different algorithms, the metadata about that encryption must be stored somewhere in
a manner that is secure and reliable. This metadata, along with other metadata about
the file, including its path, will be stored in the previously discussed metadata storage
system, encrypted by a deterministic, hierarchical encryption scheme. A hierarchical en-
cryption scheme based on BIP32 [44] will allow subtrees to be shared without sharing
their parents and will allow some files to be shared without sharing other files. See sec-
tion 4.11 for a discussion of our path-based hierarchical deterministic encryption scheme.

Audits and reputation

Incentivizing storage nodes to accurately store data is of paramount importance to the
viability of this whole system. It is essential to be able to validate and verify that storage
nodes are accurately storing what they have been asked to store.

When storage nodes initially join the network, they generate a unique identity via a
small proof of work function. Storage nodes build up an initial reputation score during a
vetting period during which they are subject to an increased level of audit and uptime
checks to ensure the nodes are properly operated. During the first 9 months of opera-
tion, a portion of storage node earnings are held by a Satellite as an offset against the
possibility that a node may leave the network with data stored on the storage node such
that some portion of that data may require repair. At all times while a storage node is
operating on the network, it is subject to an audit process for each Satellite for which it
stores data.

Many storage systems use probabilistic per-file audits, called proofs of retrievability,
as a way of determining when and where to repair files [45, 46]. We are extending the
probabilistic nature of commmon per-file proofs of retrievability to range across all possi-
ble files stored by a specific node. Audits, in this case, are probabilistic challenges that
confirm, with a high degree of certainty and a low amount of overhead, that a storage
node is well-behaved, keeping the data it claims, and not susceptible to hardware failure
or malintent. Audits function as “spot checks" [47] to help calculate the future usefulness
of a given storage node.

In our storage system, audits are simply a mechanism used to determine a node's de-
gree of stability. Failed audits will result in a storage node being marked as bad, which will
result in redistributing data to new nodes and avoiding that node altogether in the fu-
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ture. Storage node uptime and overall health are the primary metrics used to determine
which files need repair.

As is the case with proofs of retrievability [45, 46], this auditing mechanism does not
audit all bytes in all files. This can leave room for false positives, where the verifier believes
the storage node retains the intact data when it has actually been modified or partially
deleted. Fortunately, the probability of a false positive on an individual partial audit is
easily calculable (see section 7.2). When applied iteratively to a storage node as a whole,
detection of missing or altered data becomes certain to within a known and modifiable
error threshold.

A reputation system is needed to persist the history of audit outcomes for given node
identities. Our overall framework has flexible requirements on the use of such a system,
but see section 4.15 for a discussion of our initial approach.

Data repair

Data loss is an ever-present risk in any distributed storage system. While there are many
potential causes for file loss, storage node churn (storage nodes joining and leaving the
network) is the largest leading risk by a significant degree compared to other causes. As
discussed in section 2.5, network session time in many real world systems range from
hours to mere minutes [7]. While there are many other ways data might get lost, such
as corruption, malicious behavior, bad hardware, software error, or user initiated space
reclamation, these issues are less serious than full node churn. We expect node churn to
be the dominant cause of data loss in our network.

Because audits are validating that conforming nodes store data correctly, all that re-
mains is to detect when a storage node stops storing data correctly or goes offline and
then repair the data it had to new nodes. To repair the data, we will recover the original
data via an erasure code reconstruction from the remaining pieces and then regenerate
the missing pieces and store them back in the network on new storage nodes.

It is vital in our system to incentivize storage node participants to remain online for
much longer than a few hours. To encourage this behavior, our payment strategy will
involve rewarding storage node operators that keep their nodes participating for months
and years at a time.

Payments

Payments, value attribution, and billing in decentralized networks are a critical part of
maintaining a healthy ecosystem of both supply and demand. Of course, decentralized
payment systems are still in their infancy in a number of ways.

For our framework to achieve low latency and high throughput, we must not have
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transactional dependencies on a blockchain (see section 2.10). This means that an ad-
equately performant storage system cannot afford to wait for blockchain operations.
When operations should be measured in milliseconds, waiting for a cluster of nodes to
probabilistically come to agreement on a shared global ledger is a non-starter.

Our framework instead emphasizes game theoretic models to ensure that partici-
pants in the network are properly incentivized to remain in the network and behave ra-
tionally to get paid. Many of our decisions are modeled after real-world financial relation-
ships. Payments will be transferred during a background settlement process in which
well-behaved participants within the network cooperate. Storage nodes in our frame-
work should limit their exposure to untrusted payers until confidence is gained that those
payers are likely to pay for services rendered.

In addition, the framework also tracks and aggregates the value of the consumption of
those services by those who own the data stored on the network. By charging for usage,
the framework is able to support the end-to-end economics of the storage marketplace
ecosystem.

Although the Storj network is payment agnostic and the protocol does not require a
specific payment type, the network assumes the Ethereum-based STORJ token as the
default mechanism for payment. While we intend for the STORJ token to be the primary
form of payment, in the future other alternate payment types could be implemented,
including Bitcoin, Ether, credit or debit card, ACH transfer, or even physical transfer of live
goats.



4. Concrete implementation

We believe the framework we've described to be relatively fundamental given our design
constraints. However, within the framework there still remains some freedom in choosing
how to implement each component.

In this section, we lay out our initial implementation strategy. We expect the details
contained within this section to change gradually over time. However, we believe the de-
tailsoutlined here are viable and support a working implementation of our framework ca-
pable of providing highly secure, performant, and durable production-grade cloud stor-
age.

4.1 Definitions

The following defined terms are used throughout the description of the concrete imple-
mentation that follows:

4.1.1 Actors

Client A user or application that will upload or download data from the network.
Peer class A cohesive collection of network services and responsibilities. There are three
different peer classes that represent services in our network: storage nodes, Satel-
lites, and Uplinks.
Storage node This peer class stores data for others and gets paid for storage and band-
width. It registers itself directly with Satellites it trusts.
Uplink This peer class represents any application or service that implements libuplink
and wants to store and/or retrieve data. This peer class is not expected to remain
online like the other two classes and is relatively lightweight. This peer class per-
forms encryption, erasure encoding, and coordinates with the other peer classes on
behalf of the customer/client.
libuplink A library which provides all necessary functions to interact with storage
nodes and Satellites directly. This library will be available in a number of differ-
ent programming languages.

Gateway A service which provides a compatibility layer between other object stor-
ageservices such as Amazon S3and libuplink exposing an Amazon S3-compatible
API.

Uplink CLI Acommand line interface for uploading and downloading files from the
network, managing permissions and sharing, and managing accounts.

Satellite This peer class allows storage nodes to register with it, caches node address
information, stores per-object metadata, maintains storage node reputation, ag-
gregates billing data, pays storage nodes, performs audits and repair, and manages
authorization and user accounts. Users have accounts on and trust specific Satel-
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lites. Any user can run their own Satellite, but we expect many users to elect to avoid
the operational complexity and create an account on another Satellite hosted by a
trusted third party such as Storj Labs, a friend, group, or workplace.

SATELLITES

STORAGE
NODES

CUSTOMER
APPLICATION

4—) uPLINK

Q.

Figure 4.1: The three different peer classes

4.1.2 Data

Bucket A bucketisan unbounded but named collection of objects (or files) identified by
object keys. Every object has a unique key within a bucket.

Object Key An object key is a unique identifier for an object (or file) within a bucket.
An object key is an arbitrary string of bytes. Object keys, like traditional filesystem
paths, contain forward slashes at access control boundaries. Forward slashes (re-
ferred to as the path separator) separate object key path components. An example
object key might be videos/carlsagan/gloriousdawn.mp4, where the path compo-
nents are videos, carlsagan, and gloriousdawn.mp4. Unless otherwise requested,
we encrypt paths before they ever leave the customer’s application’'s computer.

Object (or File) An object (or file) is the main data type in our system. An object is re-
ferred to by an object key, contains an arbitrary amount of bytes, and has no mini-
mum or maximum size. An object is represented by an ordered collection of one or
more segments. Segments have a fixed maximum size. An object also supports a
limited amount of key/value user-defined fields called object metadata. Like object
keys, the data contained in an object is encrypted before it ever leaves the client
computer.

Object metadata Object metadata are user defined key/value fields that are associated
with an object. Object metadata are stored encrypted.

Segment Asegmentrepresentsasingle array of bytes, between O and a Satellite-defined
Mmaximum segment size. See section 4.8.2 for more details.

Remote Segment A remote segment is a segment that will be erasure encoded and
distributed across the network. A remote segment is larger than the metadata re-
quired to keep track of its bookkeeping, which includes information such as the IDs
of the nodes that the data is stored on.
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Figure 4.2: Files, segments, stripes, erasure shares, and pieces
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Inline Segment An inline segment is a segment that is small enough where the data
it represents takes less space than the corresponding data a remote segment will
need to keep track of which nodes had the data. In these cases, the data is stored
“inline” instead of being stored on nodes.

Encryption block An encryption block is a small fixed amount of bytes that is used asan
encryption boundary size. Authenticated encryption happens on encryption blocks
individually (with monotonically increasing nonces). All segments are encrypted in
encryption blocks. Encryption blocks are often an integer multiple of the stripe size
for alignment reasons.

Stripe A stripe is a further subdivision of a segment. A stripe is a fixed amount of bytes
that is used as an erasure encoding boundary size. Erasure encoding happens on
stripes individually. Inline segments do not have erasure encoding, and thus only
remote segments erasure encode stripes. A stripe is the unit on which audits are
performed. See section 4.8.3 for more details.

Erasure Share \When astripe is erasure encoded, it generates multiple pieces called era-
sure shares. Only a subset of the erasure shares are needed to recover the original
stripe. Each erasure share has an index identifying which erasure share it is (e.g,
the first, the second, etc.).

Piece When a remote segment’s stripes are erasure encoded into erasure shares, the
erasure shares for that remote segment with the same index are concatenated to-
gether, and that concatenated group of erasure shares is called a piece. If there are
n erasure shares after erasure encoding a stripe, then there are n pieces after pro-
cessing a remote segment. The ith piece is the concatenation of all of the jith erasure
shares from that segment’s stripes. See section 4.8.5 for more details.

Pointer A pointer is a data structure that either contains the inline segment data, or
keeps track of which storage nodes the pieces of a remote segment were stored on,
along with other per-file metadata.

Peer classes

Our overall strategy extends from our previous version [35] and also heavily mirrors dis-
tributed storage systems such as the Google File System [26] (and other GFS-like sys-
tems [27,48,49]) and the Lustre distributed file system [28]. In every case, there are three
major actors in the network: metadata servers, object storage servers, and clients. Ob-
ject storage servers hold the bulk of the data stored in the system. Metadata servers keep
track of per-object metadata and where the objects are located on object storage servers.
Clients provide a coherent view and easy access to files by communicating with both the
metadata and object storage servers.

Lustre'sarchitecture is proven for high performance. The majority of the top 100 fastest
supercomputers use Lustre for their high-performance, scalable storage [28]. While we
don't expect to achieve equal performance over a wide-area network, we expect dramat-
ically better performmance than other architectures. Any limitation, if any, we experience
in performance will be due to factors besides our overall architecture.
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Our previous version used different names for each component. What we previously
referred to as Storj Share, we now refer to as simply storage nodes. Our formerly central-
ized single Bridge instance can now be run by anyone and is referred to as a Satellite.
Our libstorj library will be made to be backwards compatible where possible, but we now
refer to client software as Uplinks.

Storage node

The main duty of the storage node is to reliably store and return data. Node operators
are individuals or entities that have excess hard drive space and want to earn income
by renting their space to others. These operators will download, install, and configure
Storj software locally, with no account required anywhere.! They will then configure disk
space and per-Satellite bandwidth allowance. During Satellite registration and check-in,
storage nodes will advertise how much bandwidth and hard drive space is available, and
their designated STORJ token wallet address.

To simplify lifecycle management for ephemeral files, storage nodes also keep track
of optional per-piece “time-to-live”, or TTL, designations. Pieces may be stored with a
specific TTL expiry where data is expected to be deleted after the expiration date. If no
TTL is provided, data is expected to be stored indefinitely. This means storage nodes have
a database of expiration times and must occasionally clear out old data.

Storage nodes must additionally keep track of signed bandwidth allocations (see sec-
tion 4.17) to send to Satellites for later settlement and payment. This also requires a small
database.

Storage nodes can choose with which Satellites to work. If they work with muiltiple
Satellites (the default behavior), then payment may come from multiple sources on vary-
ing payment schedules. Storage nodes are paid by specific Satellites for (1) returning data
when requested in the form of egress bandwidth payment, and for (2) storing data at rest.
Storage nodes are expected to reliably store all data sent to them and are paid with the
assumption that they are faithfully storing all data. Storage nodes that fail random audits
will be "disqualified" and thus removed from the pool, can lose held funds to cover addi-
tional costs, and will receive limited to no future payments. Storage nodes are not paid
for the initial transfer of data to store (ingress bandwidth). This is to discourage storage
nodes from deleting data only to be paid for storing more, which became a problem with
our previous version [35]. While storage nodes are paid for repair egress bandwidth us-
age, some Satellites may opt to pay less than normal retrieval egress bandwidth usage.
Storage nodes are not paid for Satellite registration operations or any other maintenance
traffic.

Storage nodes will support three primary methods: get, put, and delete. Each method
will take a piece ID, a Satellite ID, a signature from the associated Satellite instance, and a

TRegistration with a US-1099 tax form service may be required.
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bandwidth allocation (see section 4.17). The Satellite ID forms a namespace. An identical
piece ID with a different Satellite |D refers to a different piece.

The put operation will take a stream of bytes and an optional TTL and store the bytes
such that any subrange of bytes can be retrieved again via a get operation. Get opera-
tions are expected to work until the TTL expires (if a TTL was provided) or until a delete or
garbage collection (4.19) operation is received, whichever comes first.

Storage nodes will allow administrators to configure maximum allowed disk space.
They will keep track of how much is remaining, and reject operations that do not have a
valid signature from the appropriate Satellite.

Storage nodes also support a garbage collection system, where they can retrieve a
probabilistic data structure called a Bloom filter [50] that indicates which pieces are no
longer tracked and can be safely deleted.

The storage node has been released as open source software.

Node identity

During setup, storage nodes, Satellites, and Uplinks all generate their own identity and
certificates for use in the network.

Each node will operate its own certificate authority, which requires a public/private
key pair and a self-signed certificate. The certificate authority's private key will ideally
be kept in cold storage to prevent key compromise. It's important that the certificate
authority private key be managed with good operational security because key rotation
for the certificate authority will require a brand new node ID.
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CERTIFICATE AUTHORITY
PRIVATE KEY PUBLIC KEY ==) IDENTIFICATION

T
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Figure 4.3: The different keys and certificates that compose a storage node’s overall
identity. Each row represents a private/oublic key pair.
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The public key of the node’s certificate authority determines its node ID. As in S/Kadem-
lia [32], the node ID will be the hash of the public key and will serve as a proof of work for
joining the network. Unlike Bitcoin's proof of work [23], the proof of work will be depen-
dent on how many trailing zero bits one can find in the hash output. This cost is meant
to make Sybil attacks prohibitively expensive and time consuming.

Each node will have a revocable leaf certificate and key pair that is signed by the node's
certificate authority. Nodes use the leaf key pair for communication. Each leaf has a
signed timestamp that Satellites keep track of per node. Should the leaf become com-
promised, the node can issue a new leaf with a later timestamp. Interested peers will
make note of newly seen leaf timestamps and reject connections from nodes with older
leaf certificates. As an optimized special case, peers will not need to make a note when
the leaf certificate and certificate authority share the same timestamp.

Peer-to-peer communication

We are using a self-made gRPC-like [51] application protocol (DRPC). For security, it runs
on top of either Transport Layer Security (TLS) [52] or the Noise Protocol Framework in IK
mode [53]. That layer then runs on top of TCP or QUIC (over UDP). TCP and QUIC provide
reliable, ordered delivery; TLS and Noise provide privacy and authentication; and DRPC
provides multiplexing and a convenient programmer interface. Noise is used in certain
cases to reduce round trips due to connection handshakes in situations where the data
is already encrypted and forward secrecy isn't necessary.

When using authenticated communication such as TLS or Noise, every peer can as-
certain the ID of the node with which it is speaking by validating the certificate chain and
hashing its peer’s certificate authority’s public key. It can then be estimated how much
work went into constructing the node ID by considering the number of trailing zero bits
at the end of the ID. Satellites can configure a minimum proof of work required to pass
an audit (section 4.13) such that, over time, the network will require greater proofs of work
due to natural user intervention.

Node discovery

At this point, we have storage nodes and we have the means to identify and commu-
nicate with them if we know their address. We must account for the fact that storage
nodes will often be on consumer internet connections and behind routers with con-
stantly changing IP addresses. Therefore, the node discovery system'’s goal is to imple-
ment a means to look up a node's latest address by node ID, somewhat similar to the role
DNS provides for the public internet.

In our per-Satellite node discovery cache, each Satellite stores information to be able
to communicate with the nodes in its network, as well as data needed to select nodes on
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which to store data. This caching service will live independently in each Satellite and is
our primary source of truth for DNS-like functionality for node lookups.

When a node joins the network, it reaches out to each Satellite in its Satellite trustlist
(see 4.18 for details) indicating that it is available and willing to accept data from the
Satellite. In return, the Satellite confirms or denies the success of the connection. If it
is successful, the Satellite stores the node's available disk space, STORJ wallet address, IP
address, and any other metadata the Satellite needs in its node discovery cache.

The node will subsequently check-in with each of its Satellites on an ongoing basis,
perhaps once per hour, to notify the Satellites of any updates. If a node has not commu-
nicated with a Satellite after a certain amount of time, the Satellite will reach out to the
node to check its status. If it can no longer successfully reach the node, the Satellite will
stop suggesting that node to clients.

Redundancy

We use the Reed-Solomon erasure code [54]. To implement our solution for reducing
the effects of long-tails (see section 3.4.2), we choose 4 numbers for each object that we
store, k, m, 0, and n, such that k < m < o < n. The standard Reed-Solomon numbers are
k and n, where k is the minimum required number of pieces for reconstruction, and n is
the total number of pieces generated during creation.

DURABILITY LEVEL

I m o n
| I I I |
MINIMUM REQUIRED TO SAFETY BUFFER FOR LONG TAIL
RECONSTRUCT DATA BUFFER FOR NODES TOLERANCE

REPAIR FLUCTUATION

Figure 4.4: The relationship between k, m, o, and n.

The minimum safe and optimal values, respectively, are m and o. The value m is cho-
sen such that if a Satellite notices the amount of available pieces has fallen below m, it
triggers a repair immediately in an attempt to make sure we always maintain k or more
pieces (m is called rg in Giroire et al. [34]). To achieve our long-tail performance improve-
ments [37,38,41,42], the value o is chosen such that during uploads and repairs, as soon as
o pieces have finished uploading, remaining pieces up to n are canceled. Furthermore, o
is chosen such that storing o pieces is all that is needed to achieve the desired durability
goals; n is thus chosen such that storing n pieces will be excess durability.

The amount of long tail uploads we can tolerate is n—o0, and thus is the amount of slow
nodes to which we are immune. The amount of nodes that can go temporarily offline at
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the same time without triggering a repair is o — m. The safety buffer to avoid losing the
data between the time we recognize the data requires a repair and the actual repair is
executed is m —k.

See section 7.3 for how we select our Reed-Solomon numbers. Also see section 4.14
for a discussion about how we repair data as its durability drops over time.

Structured file storage

Object metadata

Many applications benefit from being able to keep metadata alongside files. Amazon S3
supports “object metadata” [55] to assist with this need. This functionality is called “ex-
tended attributes” in many POSIX compatible systems. Every object will include a limited
set of user-specified key-value pairs that will be stored alongside other metadata about
the object.

Objects as Segments

FILE DATA @08 1A 7B 8A 1A 7B 7B 00 18 AA 1A 7B 086 1A 7B 1A 7B B8A ...

l l

SEGMENTS 00 1A 7B 8A 1A 7B 7B 00 18 AA 1A 7B

In our previous version [35], the term shard referred to pieces on storage nodes, whereas
sharding referred to segmenting a file into smaller chunks for easier processing. With the
addition of erasure coding in our previous version, these terms became somewhat con-
fusing, so we have decided to distinguish each meaning with new words.

The sharding process is now called segmenting, and the highest level subdivision of
an object’s stream of data is called a segment. Unfortunately, there is general inconsis-
tency using these terms in the literature. GFS refers to segments as chunks [26]. Lustre
refersto segments as stripes [28], but we use the term stripes for a further subdelineation.

A file may be small enough that it consists of only one segment. If that segment is
smaller than the metadata required to store it on the network, the data will be stored
inline with the metadata.?2 We call this an inline segment.

For larger files, the data will be broken into one or more large remote segments. Seg-
menting in this manner offers numerous advantages to security, privacy, performance,
and availability. As in other distributed storage systems [26-28,48,49], segmenting large
files (e.g. videos) and distributing the segments across the network reduces the impact of

2The Linux file system Ext4 performs the same optimization with inline inodes [56].
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content delivery on any given node, as bandwidth demands are distributed more evenly
across the network. As with our previous version [35], standardized sizes help frustrate
attempts to determine the content of a given segment and can help obscure the flow of
data through the network. In addition, the end user can take advantage of parallel trans-
fer, similar to BitTorrent [57] or other peer-to-peer networks. Lastly, capping the size of
segments allows for more uniform storage node filling. Thus, a node only needs enough
space to store a segment to participate in the network, and a client doesn’'t need to find
nodes that have enough space for a large file.

Segments as Stripes

SEGMENTS ©0 1A 7B 8A 1A 7B 7B 66 18 AA 1A 7B

l l

ENCRYPT 71 B8 7A C3 7F F3

—

STRIPES 71 B@ 7A C3 7F F3

In many situations, it'simportant to access a subsection of a larger piece of data. Some
file formats, such as video files or disk images, support seeking, where only a subset of
the data is needed for read operations. As the creators of audio CDs discovered, it's useful
to be able to decode small parts of a segment to support these operations [36].

For this purpose, a stripe defines a subset of a segment and should be no more than a
couple of kilobytes in size. Encryption happens on an encryption block boundary, which
may be a small multiple of stripes, whereas erasure encoding happens on a single stripe
at a time. Because we use authenticated encryption, every encryption block has a slight
overhead, so slightly larger encryption sizes are preferred. However, audits happen on
stripes, and we want audit bandwidth usage to be small.

For the reader familiar with the zfec library, in filefec mode, zfec refers to a stripe as a
chunk [40].
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4.8.4 Stripes as Erasure Shares

STRIPES 71 BO 7A Q3 7F F

v\ O\

ERASURE
SHARES 0 73 0 48 0 23
1 12 1 AB 1 1A
2 DA 2 Al 2 AB

As discussed in sections 3.4 and 4.7, erasure codes give us the chance to control net-
work durability in the face of unreliable storage nodes.

Stripes are the boundary by which we perform erasure encoding. In a (k,n) erasure
code scheme, n erasure shares are generated for every stripe [54]. For example, perhaps
a stripe is broken into 40 erasure shares (n = 40), where any 20 (k = 20) are needed to
reconstruct the stripe. Each of the 40 erasure shares will be 1/20th the size of the original
stripe.

Erasure encoding a single stripe at a time allows us to read small portions of a large
segment without retrieving the entire segment first [36]. It also allows us to stream data
into the network without staging it beforehand, and it enables a number of other useful
features.

See section 7.3.3 for a breakdown of how varying the erasure code parameters affects
availability and redundancy.

4.8.5 Erasure Shares as Pieces

ERASURE SHARES PIECE

o 73 0 48 0 23 —) 0 7348 23
1 12 1 AB 1 1A —) 1 12 AB 1A
2 DA 2 A1 2 AB —) 2 DAAL AB

Because stripes are already small, erasure shares are often much smaller, and the
metadata to keep track of all of them separately will be immense relative to their size.
All n erasure shares have a well-defined index associated with them. More specifically, for
a fixed stripe and any given n, the ith share of an erasure code will always be the same.
As with the zfec library's filefec mode [40], instead of keeping track of all of the erasure
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shares separately, we pack all of the erasure shares with the same index into a piece. In
a (k,n) scheme, there are n pieces, where each piece i is the ordered concatenation of
all of the erasure shares with index i. As a result, where each erasure share is 1/kth of a
stripe, each piece is 1/kth of a segment, and only k pieces are needed to recover the full
segment. A piece is what we store on a storage node.

Satellites generate a brand-new, randomly chosen root piece ID each time a new up-
load begins. The Uplink will keep the root piece ID secret and send a hode-specific piece
ID to each storage node, formed by taking the Hash-based Message Authentication Code
(HMAC) of the root piece ID and the node’s ID. This serves to obscure what pieces belong
together from storage nodes. The root piece ID is stored in the pointer.

Storage nodes namespace pieces by Satellite ID. If a piece ID used by one Satellite is
reused by another Satellite, each Satellite can safely assume the shared piece ID refers to
a different piece than the other Satellite, with different content and lifecycle.

Pointers

The data owner will need knowledge of how a remote segment is broken up and where
in the network the pieces are located to recover it. This is contained in the pointer data
structure.

A pointer includes: which nodes are storing the pieces, encryption information, era-
sure coding details, the repair threshold amount that determines how much redundancy
asegment must lose before triggering a repair, the amount of pieces that must be stored
to consider a repair to be successful, and other details. If the segment is an inline seg-
ment, the pointer contains the entire segment’s binary data instead of which nodes store
the pieces.

In our previous version [35], we used two data structures to keep track of the afore-
mentioned kinds of information: frames and pointers. In this version, we have combined
these data structures into a single data structure and elected to call the new combined
data structure a pointer.

Metadata

The metadata storage system in the Storj network predominantly stores pointers. Other
individual components of the Storj network communicate with the pointer database to
store and retrieve pointers by path to perform actions.

The most trivial implementation for the metadata storage functionality we require will
be to simply have each user use their preferred trusted database, such as MongoDB, Mari-
aDB, Couchbase, PostgreSQL, SQLite [58], Cassandra [59], Spanner [60], or CockroachDB,
to name a few. In many cases, this will be acceptable for specific users, provided those
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users are managing appropriate backups of their metadata. Indeed, the types of users
who ha